M.Math. IInd year Second semestral exam 2013 Algebraic Number Theory Instructor — B.Sury ANSWER ANY FIVE

01

Prove that the class group of $(\sqrt{-10})$ has order 2.

OR

Let K be a number field of degree 3 over **Q** such that disc(K) = -31. Show that O_K is a PID.

Q 2.

Consider a cyclotomic field $\mathbf{Q}(\zeta)$ where ζ is a primitive (2^n+1) -th root of unity. If $\Phi(X)$ denotes the minimal polynomial of ζ over \mathbf{Q} , consider the reduction $\overline{\Phi}(X)$ of $\Phi(X)$ mod 2 in $(\mathbf{Z}/2\mathbf{Z})[X]$. Determine the number of irreducible factors of the polynomial $\overline{\Phi}(X)$ and their degrees.

Q 3.

Let k be complete with respect to a nonarchimedean valuation |.|. Let l be a finite extension of k. Prove that $|x|_l := |N_{l/k}(x)|^{1/[l:k]}$ is a nonarchimedean valuation on l.

OR

Prove that \mathbf{Q}_p contains p-1 distinct roots of unity.

Q 4.

Let N/K be a normal extension of number fields, with Galois group G. For a subgroup H of G, consider $L=N^H$. Let $G=\bigsqcup_{i=1}^n Hg_i$. View each element x of G as a permutation of $\{1,2,\cdots,n\}$ (by $Hg_ix=Hg_{x(i)}$). Let x be the Frobenius automorphism of an unramified prime ideal P of O_N . If x is a product of cycles of lengths f_1,\cdots,f_k , prove that the ideal $(P\cap O_K)O_L$ is a product of k distinct prime ideals, which have the residue degrees f_1,f_2,\cdots,f_k .

OR

For any modulus **m** of a number field K, define the groups $K_{\mathbf{m}}$ and $K_{\mathbf{m},1}$. Further, show that the quotient $K_{\mathbf{m}}/K_{\mathbf{m},1}$ is finite.

Q 5.

Determine the rank and torsion group of units of the ring of integers of $\mathbf{Q}(\zeta_{p^n})$ where p is an odd prime.

OR

Let α be a root of $f(X) = X^5 - X - 1$ and let $K = \mathbf{Q}(\alpha)$. The polynomial f is irreducible and the discriminant of K is 19×151 - assume these. Show that the ideal $(19, \alpha + 6)^2$ divides $19O_K$.

Q 6.

Consider $L := \mathbf{Q}(\zeta_{p^2})$, where ζ_{p^2} is a primitive p^2 -th root of unity with p an odd prime. Let K be the unique subfield of L which has degree p over \mathbf{Q} . Show that 2 splits completely in K if and only if $2^{p-1} \equiv 1 \mod p^2$.

OR

Consider $L := \mathbf{Q}(\zeta_{31})$, where ζ_{31} is a primitive 31-st root of unity. Let K be a subfield of L which has degree 3 over \mathbf{Q} . Prove that $O_K \neq \mathbf{Z}[\alpha]$ for any α .

Q 7.

Define the discriminant of a number field K. Determine with proof the sign of disc K. Further, describe the embedding of O_K as a lattice in \mathbb{R}^n where $[K:\mathbb{Q}]=n$ and determine its volume.

OR

For the number field $K = \mathbf{Q}(\alpha)$ where $\alpha^5 = 2\alpha + 2$, prove that $O_K = \mathbf{Z}[\alpha]$.

Q 8.

Prove that $(1-\zeta_p)^{p-2}$ is the different ideal of $\mathbf{Q}(\zeta_p)$ where p is a prime, and ζ_p is a primitive p-th root of unity.

OR

State the Frobenius density theorem. Use it to deduce that the density of primes which split completely in a Galois extension is the reciprocal of the order of the Galois group.